Nondivergence of Horocyclic Flows on Moduli Space
نویسنده
چکیده
The earthquake flow and the Teichmüller horocycle flow are flows on bundles over the Riemann moduli space of a surface, and are similar in many respects to unipotent flows on homogeneous spaces of Lie groups. In analogy with results of Margulis, Dani and others in the homogeneous space setting, we prove strong nondivergence results for these flows. This extends previous work of Veech. As corollaries we obtain that every closed invariant set for the earthquake (resp. Teichmüller horocycle) flow contains a minimal set, and that almost every quadratic differential on a Teichmüller horocycle orbit has a uniquely ergodic vertical foliation. Stony Brook IMS Preprint #2000/8 September 2000
منابع مشابه
A pr 2 00 3 BOUNDED GEODESICS IN MODULI SPACE
In the moduli space of quadratic differentials over complex structures on a surface, we construct a set of full Hausdorff dimension of points with bounded Teichmüller geodesic trajectories. The main tool is quantitative nondivergence of Teichmüller horocycles, due to Minsky and Weiss. This has an application to billiards in rational polygons.
متن کاملBounded Geodesics in Moduli Space
In the moduli space of quadratic differentials over complex structures on a surface, we construct a set of full Hausdorff dimension of points with bounded Teichmüller geodesic trajectories. The main tool is quantitative nondivergence of Teichmüller horocycles, due to Minsky and Weiss. This has an application to billiards in rational polygons.
متن کاملHorocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups
O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...
متن کاملHorocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups
O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...
متن کاملHorocyclic Surfaces in Hyperbolic 3-space
Horocyclic surfaces are surfaces in hyperbolic 3-space that are foliated by horocycles. We construct horocyclic surfaces associated with spacelike curves in the lightcone and investigate their geometric properties. In particular, we classify their singularities using invariants of corresponding spacelike curves.
متن کامل